Automatic Commanding of the Mars Observer Camera

Michael Caplinger
Malin Space Science Systems, Inc.
PO Box 910148
San Diego CA 92191-0148, USA
phone: (619) 552-2650 fax: (619) 458-0503
mc@msss.com

KEY WORDS AND PHRASES

Conflict resolution, spacecraft imaging
instrument operations, mission planning,
sequencing and scheduling.

INTRODUCTION

Mars Observer, launched in September
1992, was intended to be a "survey-type" mis-
sion that acquired global coverage of Mars from
a low, circular, near-polar orbit during an entire
martian year [1]. As such, most of its instru-
ments had fixed data rates, wide fields of view,
and relatively low resolution, with fairly limited
requirements for commanding. An exception is
the Mars Observer Camera, or MOC. The
MOC consists of a two-color Wide Angle (WA)
system that can acquire both global images at
low resolution (7.5 km/pixel) and regional
images at commandable resolutions up to 250
m/pixel. Complementing the WA is the Narrow
Angle (NA) system, that can acquire images at
8 resolutions from 12 m/pixel to 1.5 m/pixel,
with a maximum crosstrack dimension of 3 km.
The MOC also provides various forms of data
compression (both lossless and lossy), and is
designed to work at data rates from 700 bits per
second (bps) to over 80k bps [2].

Because of this flexibility, developing
MOC command sequences is much more
difficult than the routine mode-changing that
characterizes other instrument operations.
Although the MOC cannot be pointed (the
spacecraft is fixed nadir-pointing and has no
scan platform), the timing, downlink stream
allocation, compression type and parameters,
and image dimensions of each image must be
commanded from the ground, subject to the
constraints inherent in the MOC and the space-
craft. To minimize the need for a large opera-
tions staff, the entire command generation

process has been automated within the MOC
Ground Data System [3].

Following the loss of the Mars Observer
spacecraft in August 1993, NASA intends to
launch a new spacecraft, Mars Global Surveyor
(MGS), in late 1996. This spacecraft will carry
the MOC flight spare (MOC 2). The MOC 2
operations plan will be largely identical to that
developed for MOC, and all of the algorithms
described here are applicable to it.

TARGET GENERATION

In advance, users define "time-independent
observing plans" that consist of a specification
of an area or feature edge on the surface of
Mars, the type of acquisition(s) to be made
there, any geometric and timing constraints
(such as lighting angles, season, etc.), the image
size, resolution, allowable compression types,
and a single number indicating the priority of
the observation. (By convention, priorities are
non-negative and the more important an obser-
vation is, the larger its priority number.)

Daily during operations, these plans and
spacecraft position are examined and a list of
potential images is generated. This "strawman
sequence” consists of image acquisition com-
mands to be sent to the MOC; each command
specifies the time a specific optical system is to
be activated, and a set of parameters (image
size, resolution, compression type, and down-
link channel assignment) to be associated with
that particular acquisition.

Since there are typically many thousands
of active observing plans, and targeting is per-
formed frequently, the algorithm that generates
the strawman sequence must be very efficient.
The algorithm we finally used treats NA and
WA swaths in two different ways. Such a dual
approach makes sense, since the clocking rates,
and hence the accuracy requirements, are two
orders of magnitude different between NA and

401



WA. Also, the very narrow field of view of the
NA allows a much simpler geometric descrip-
tion of its swath to be used.

Narrow Angle

The NA swath is treated as a widthless
polyline generated by sampling the ground track
in equal time intervals and assuming linearity in
lat/lon space between these points. The
required accuracy is obtainable with fixed 5-
second spacing, though a method using variable
spacing, with more time resolution near the
poles, is preferable and would be required for
non-circular orbits.

The core of the algorithm is a loop over
each segment of the ground track. A clip test
between this line and the target box is done in
lat/lon space, and the locations of the
intersection(s), if any, are calculated, using the
parametric representation of the line segment.
These parameters are used to compute the first
and last times of intersection, and the loop gath-
ers the minimum and maximum time values.
These values are used to generate the start time
and dimensions of the image event, if there
were any intersections. If there are no intersec-
tions, this area is not accessible on this orbit.

Because the majority of boxes on a given
run are probably not accessible by the NA,
some attention was paid to rejecting a line seg-
ment that did not intersect the box as soon as
possible in the algorithm, using a trivial
bounding-box calculation.

Wide Angle

The WA swath covers over 30 degrees of
longitude and obviously cannot be treated as a
widthless line. Instead, two ground track poly-
lines are calculated -- one representing the max-
imum view angle of the WA in the +Y direction
(plus) and the other in the -Y direction (minus).
These curves represent the overall field of view
of the MOC. Note that during the ascending
part of the orbit, plus is east of minus; during
the descending part, minus is east of plus. This
ordering is used to remove the meridian-
crossing ambiguity.

Rather than process the entire swath as a
single polygon, it is broken up into four-sided
quadrilaterals, called "quads", with sides con-
necting the four points defined by the plus and
minus tracks at time t and t+delta. (Note that
the lines connecting the plus and minus tracks

at the same time are not the tracks followed by
single scanlines, except near the equator, and
they are not used as approximations to scanlines
-- they are merely arbitrary lines.) Because
quads are always convex, processing them is
relatively simple.

The basic algorithm is a loop through all
of the quads for a given orbit. At each point,
the quad is tested against a target box. Two
kinds of tests are performed and point coordi-
nates are recorded. First, any box corner con-
tained within the quad is recorded. Second, any
point of intersection between the plus and
minus edges of the quad with the box are
recorded.

After all the quads are compared against a
given box, the gathered test points are mapped
to times and WA pixel coordinates using a
separate iterative algorithm. (If a box generated
no test points with the swath, it cannot be
viewed on that orbit.) The ranges of the test
point pixels and times are recorded and used to
generate the timing and dimensions for a WA
event.

The algorithm described so far ignores
latitudes near the pole, because quads do not
appear above a given critical latitude. (For
example, suppose a quad had its bottom edge at
latitude 85, and then the spacecraft passed over
the pole and back down to latitude 85 before the
quad’s top edge was created. Then the quad
would appear to have no latitude extent above
latitude 85.) The polar areas can be handled by
noting that if an orbit changes from ascending
to descending or vice versa near a pole, then all
boxes above a certain latitude are seen on that
pass. In addition, if an orbit passes sufficiently
close to a pole, then all boxes above a given
latitude in a range of 180 degrees of longitude
are also seen. Each pole can fall into at most
one of these two categories (it is physically
impossible to go from ascending to descending
and back on the same orbit because the place-
ment of the terminator cannot change that
rapidly.) Thus, every vertex of a box that
occurs in one of these polar regions is added to
the list of test points.

Performance

Our initial performance goal was to pro-
cess 3000 potential target areas for one orbit in
less than 5 minutes. Operationally, we saw an
average time of 2.1 minutes for this task on the
Sun SPARC:station IPX (a roughly 20



SPECmark system), so we have exceeded our
goal by over a factor of two. However, since
we were processing a significantly larger task
(13 orbits and nearly 10,000 plans) total time
was about 1.5 hours, which can become burden-
some.

Many solutions are possible without
changing the algorithm, the simplest of which is
to use a faster processor. Also, the algorithm is
easily done in parallel either by splitting plans
or orbits across processors, and so would benefit
from the multiprocessor systems becoming
available. We predict that a four-processor
SPARCstation 10 system could perform the
task above in less than 15 minutes.

CONFLICT RESOLUTION

Unfortunately, not all of the commands in
a strawman sequence can be executed because
of limited instrument resources. These
resources include buffer space, CPU processing
time, downlink rate, and power. Since the tim-
ing for each acquisition is fixed by the
spacecraft’s position, the sequence cannot be
reordered. (This makes the MOC sequencing
problem fundamentally different from other
space application sequencing problems, such as
Voyager-like or Hubble Space Telescope
sequencing [4,5].) The only free parameters left
to modify are whether or not to acquire each
potential image, and the compression type and
downlink channel assignment for each image.
(While it is possible for science users to restrict
compression or downlink channel to particular
values, this may place limits on how well the
automatic process can optimize the overall
sequence. In some cases, resolution or image
size can be altered as well, but the automatic
program does not attempt such modifications.)

Thus, the MOC sequencing program seeks
to maximize the number of images taken from
the input sequence, while choosing images of
higher priority, all other things being equal.

Obviously, the key to solving the problem
is to generate alternative possible sequences and
see which have conflicts. A critical problem is
how to know if a given MOC sequence fits
within the resource constraints. The solution is
a fast event-driven simulator that mimics the
behavior of the instrument and detects resource
conflicts. Using this simulator as a black box, it
can be determined if a given sequence is
conflict-free, and if not, when and what the
conflict is.

403

Additionally, we have the following
desires for the algorithm:

(1) it should be applicable across all data rates
(data rate assignments have changed
several times and can be expected to
change again)

it should be insensitive to exact details of
instrument behavior (during development,
the performance and details of instrument
operation were not known to any accuracy)
it should allow "splicing" of daily
sequences because planning is done piece-
meal, not all at once

Our initial approach was to develop a
series of heuristics that took a full input
sequence and deleted or modified individual
items until the sequence was without conflict.
Though this worked after a fashion, it was
extremely slow, because there was no sys-
tematic way to search for alternatives. There-
fore, it was decided to invert the approach and
develop a series of heuristics to take an initially
empty input sequence and add items to it until
no more can be added.

By "heuristic", we mean a rule intended to
choose a favorable outcome without any analyt-
ical evidence that such an outcome would be
chosen. One could have very specific heuris-
tics, such as "when the data rate is higher than
X, use predictive compression”, or quite general
heuristics, such as "choose the alternative such
that the image is resident in the buffer for the
shortest period of time." The more general
heuristics are preferable, since they rely on less
knowledge of the specifics of the process. In
addition, specific heuristics may be derivable
from the general heuristics, such that a system
using only the general heuristic will appear to
be operating under the specific heuristics as
well.

In fact, we have obtained good results with
a single heuristic, which we call "shortest-
residence-time". This is used by the following
algorithm:

)

€)

sequence = ¢ (empty sequence)
for priority = highest to lowest
for images at this priority ordered by time,
earliest to latest
for each alternative
given sequence so far, compute residence time
of current image in instrument for this
alternative. If alternative generates conflict,
set time to



if any time is not o, add this image, using
the shortest-residence-time alternative, to
sequence

The residence time of an image is the
amount of time any fraction of either raw image
data or any compressed or processed version of
that data is stored in the MOC buffer. The alter-
natives examined by the program currently are
from the set {predictive compression, channel
1; transform compression, channel 1; predictive
compression, channel 2; transform compres-
sion, channel 2}; obviously, other alternatives
could be easily added.

Performance

The requirement set for the MOC GDS
was that conflict resolution for a 12-orbit straw-
man sequence containing 1500 potential
acquisitions could be performed in less than 5
minutes; the existing system meets this perfor-
mance goal on a Sun SPARCstation 1 (a
roughly 10 SPECmark system.)

To give an idea of the size of a typical
problem and the effectiveness of our algorithm,
our standard test target set contains about 2500
planned areas. For a twelve-orbit period chosen
at random, 111 images (50 WA and 61 NA
images) were found to be accessible. At low
data rate, 29 of the 111 images could be taken;
at high data rate with 4 orbits of realtime
passes, 75 of the images could be taken.

The relationship between the sequences
found by our software and optimal sequences is
not known, although the general problem has
been shown to be NP-complete, meaning that
the optimal sequence cannot be found without
examining all sequences. We do note that our
sequences utilize 90% or more of the available
resources, indicating that little waste is present.
For small sequences (about length 10) for which
the optimal sequence could be found, our algo-
rithm either finds the optimal sequence or at
worst, fails to take one image.

CONCLUSIONS

The existing system is operational and has
processed hundreds of simulated sequences that
were then executed on the actual hardware (in
ground testing) without conflict. We hope to
use this system for instrument operations when
Mars Global Surveyor goes into orbit around
Mars in late 1997.

Some simple additions would make it pos-
sible to extend this system to missions in eccen-
tric orbits, such as the "transition orbit" of
MGS. These additions include the provision of
a resolution requirement for time-independent
plans, and removal of the reliance on geometric
properties of the ground track for simplification
of the targeting algorithm. While these addi-
tions would not completely solve the problem
for missions which use a scan platform or
spacecraft slewing to point their instruments,
we believe this framework would be easily
applicable even to such missions, by using a
series of heuristics and resolution requirements
to fix observations in time. We expect to exper-
iment with this approach soon.

ACKNOWLEDGEMENTS

I especially thank Mike Malin, the MOC
Principal Investigator, without whom the MOC
would have never existed. Marc Sarrel imple-
mented the first version of the targeting algo-
rithm; Jeff Warren provided valuable insight
into aspects of MOC geometry. This work was
supported by the Jet Propulsion Laboratory,
Contract 959060 to Malin Space Science Sys-
tems, for development and operation of the
Mars Observer Camera.

REFERENCES

[1] Albee, A.L., et al, 1992. Mars
Observer Mission. Journal of Geophysical
Research 97(ES):7665-7680.

[2] Malin, M.C,, et al, 1991. Design and
Development of the Mars Observer Camera.
International Journal of Imaging Systems and
Technology 3(1):76-91.

(3] Caplinger, M., 1993. The Mars
Observer Camera Ground Data System. In
Proceedings of the Ninth AIAA Conference on
Computers in Aerospace, San Diego, CA.

[4] Dias, W.C.,, et al, 1987. PLAN-IT:
Scheduling Assistant for Solar System Explora-
tion. Telematics and Informatics 4(4):275-287.

[5] Miller, G., et al, 1987. Expert Systems
Tools for Hubble Space Telescope Observation
Scheduling. Telematics and Informatics
4(4):301-311.



